Welcome!
I’m Wenyue Hua, postdoctoral researcher at University of California, Santa Barbara, working with Professor William Wang. I obtained my Ph.D. degree from Rutgers University, New Brunswick (2020 - 2024). I’m honored to be advised by Prof. Yongfeng Zhang. I received MA in Linguistics at Rutgers in 2020 (proudly advised by Prof. Adam Jardine) and BA in Linguistics and Philosophy and BS in Mathematics at UCLA in 2018 (proudly advised by Prof. Edward Keenan).
My research interests lie in Large Language Models and its various application, such as LLM-based agent, multi-agent system, LLM for social good, LLM-based recommender system, information retrieval. I care about the trustworthiness, safety, and efficiency of LLMs.
Ph.D. in Computer Science, 2020-2024
Computer Science Department, Rutgers University, New Brunswick
Master in Arts (Ph.D. track transfer out), Linguistics, 2018-2020
Department of Linguistics, Rutgers University, New Brunswick
B.S. in Mathematics, General & B.A. in Linguistics&Philosophy with Specialization in Computing, 2014-2018
UCLA
Agents, as user-centric tools, are increasingly deployed for human task delegation, assisting with a broad spectrum of requests by generating thoughts, engaging with user proxies, and producing action plans. However, agents based on large language models (LLMs) often face substantial planning latency due to two primary factors – the efficiency limitations of the underlying LLMs due to their large size and high demand, and the structural complexity of the agents due to the extensive generation of intermediate thoughts to produce the final output. Given that inefficiency in service provision can undermine the value of automation for users, this paper presents a human-centered efficient agent planning method – Interactive Speculative Planning – aiming at enhancing the efficiency of agent planning through both system design and human-AI interaction. Our approach advocates for the co-design of the agent system and user interface, underscoring the importance of an agent system that can fluidly manage user interactions and interruptions. By integrating human interruptions as a fundamental component of the system, we not only make it more user-centric but also expedite the entire process by leveraging human-in-the-loop interactions to provide accurate intermediate steps. Code and data will be released.
This study intends to systematically disentangle pure logic reasoning and text understanding by investigating the contrast across abstract and contextualized logical problems from a comprehensive set of domains. We explore whether LLMs demonstrate genuine reasoning capabilities across various domains when the underlying logical structure remains constant. We focus on two main questions (1) Can abstract logical problems alone accurately benchmark an LLM’s reasoning ability in real-world scenarios, disentangled from contextual support in practical settings? (2) Does fine-tuning LLMs on abstract logic problem generalize to contextualized logic problems and vice versa? To investigate these questions, we focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning. In particular, we construct instantiated datasets for deductive and abductive reasoning with 4 levels of difficulty, encompassing 12 distinct categories or domains based on the categorization of Wikipedia. Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs and their generalization potential.
This paper presents BattleAgent, an emulation system that combines the Large Vision-Language Model and Multi-agent System. This novel system aims to simulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. It emulates both the decision-making processes of leaders and the viewpoints of ordinary participants, such as soldiers. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner while offering insights into the thoughts and feelings of individuals from diverse viewpoints. The technological foundations of BattleAgent establish detailed and immersive settings for historical battles, enabling individual agents to partake in, observe, and dynamically respond to evolving battle scenarios. This methodology holds the potential to substantially deepen our understanding of historical events, particularly through individual accounts. Such initiatives can also aid historical research, as conventional historical narratives often lack documentation and prioritize the perspectives of decision-makers, thereby overlooking the experiences of ordinary individuals. BattelAgent illustrates AI’s potential to revitalize the human aspect in crucial social events, thereby fostering a more nuanced collective understanding and driving the progressive development of human society.
Recent advancements in Large Language Models (LLMs) have shown remarkable capabilities in reasoning, prompting a surge in research aimed at developing trustworthy LLMs. The emergence of LLM-based agents has garnered considerable attention, yet their trustworthiness remains an under-explored area. As agents can directly interact with the physical environment in everyday human activities, their reliability and safety is critical. This paper presents an Agent-Constitution-based agent framework, TrustAgent, an initial investigation into improving the safety dimension of trustworthiness in LLM-based agents. This framework consists of threefold strategies – pre-planning strategy which injects safety knowledge to the model prior to plan generation, in-planning strategy which bolsters safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Through experimental analysis, we demonstrate how these approaches can effectively elevate an LLM agent’s safety by identifying and preventing potential challenges. Furthermore, we explore the intricate relationships between safety and helpfulness, and model’s reasoning ability and its efficacy as a safe agent. We argue that a robust reasoning ability is a fundamental prerequisite for an LLM to function safely as an agent. This paper underscores the imperative of integrating safety awareness and trustworthiness into the design and deployment of LLM-based agents, not only to enhance their performance but also to ensure their responsible integration into human-centric environments. Data and code are publicly available at \url{https://github.com/agiresearch/TrustAgent}.
Current approaches of knowledge editing struggle to effectively propagate updates to interconnected facts. In this work, we delve into the barriers that hinder the appropriate propagation of updated knowledge within these models for accurate reasoning. To support our analysis, we introduce a novel reasoning-based benchmark – ReCoE (Reasoning-based Counterfactual Editing dataset) – which covers six common reasoning schemes in real world. We conduct a thorough analysis of existing knowledge editing techniques, including input augmentation, finetuning, and locate-and-edit. We found that all model editing methods show notably low performance on this dataset, especially in certain reasoning schemes. Our analysis over the chain-of-thought generation of edited models further uncover key reasons behind the inadequacy of existing knowledge editing methods from a reasoning standpoint, involving aspects on fact-wise editing, fact recall ability, and coherence in generation. We will make our benchmark publicly available.